Molecular aspects of membrane trafficking in paramecium.

نویسندگان

  • Helmut Plattner
  • Roland Kissmehl
چکیده

Results achieved in the molecular biology of Paramecium have shed new light on its elaborate membrane trafficking system. Paramecium disposes not only of the standard routes (endoplasmic reticulum --> Golgi --> lysosomes or secretory vesicles; endo- and phagosomes --> lysosomes/digesting vacuoles), but also of some unique features, e.g. and elaborate phagocytic route with the cytoproct and membrane recycling to the cytopharynx, as well as the osmoregulatory system with multiple membrane fusion sites. Exocytosis sites for trichocysts (dense-core secretory vesicles), parasomal sacs (coated pits), and terminal cisternae (early endosomes) display additional regularly arranged predetermined fusion/fission sites, which now can be discussed on a molecular basis. Considering the regular, repetitive arrangements of membrane components, availability of mutants for complementation studies, sensitivity to gene silencing, and so on, Paramecium continues to be a valuable model system for analyzing membrane interactions. This review intends to set a new baseline for ongoing work along these lines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signals Regulating Vesicle Trafficking in Paramecium Cells

Most data available from Paramecium, fewer from Tetrahymena, disclose essentially the same principles of signaling as in metazoans up to man. Microtubules serve for long-range signaling, whereas SNARE proteins, H-ATPase, GTPases and actin provide short-range molecular signals, with Ca as a most efficient, locally and spatially restricted signal particularly for membrane fusion. This is enabled ...

متن کامل

Molecular identification of 26 syntaxin genes and their assignment to the different trafficking pathways in Paramecium.

SNARE proteins have been classified as vesicular (v)- and target (t)-SNAREs and play a central role in the various membrane interactions in eukaryotic cells. Based on the Paramecium genome project, we have identified a multigene family of at least 26 members encoding the t-SNARE syntaxin (PtSyx) that can be grouped into 15 subfamilies. Paramecium syntaxins match the classical build-up of syntax...

متن کامل

How to design a highly organized cell: an unexpectedly high number of widely diversified SNARE proteins positioned at strategic sites in the ciliate, Paramecium tetraurelia.

There are only scattered data available on molecular aspects of vesicle trafficking in protozoa, notably in ciliates. In this context, proteins of paramount interest are the so-called SNARE proteins (soluble NSF attachment protein receptor; NSF=N-ethylmaleimide ~ensitive factor). They are positioned on opposite membranes; together with some other proteins they serve docking, e.g., of a yesic le...

متن کامل

Rab11 in Disease Progression

Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...

متن کامل

Calcium regulation in the protozoan model, Paramecium tetraurelia.

Early in eukaryotic evolution, the cell has evolved a considerable inventory of proteins engaged in the regulation of intracellular Ca(2+) concentrations, not only to avoid toxic effects but beyond that to exploit the signaling capacity of Ca(2+) by small changes in local concentration. Among protozoa, the ciliate Paramecium may now be one of the best analyzed models. Ciliary activity and exo-/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International review of cytology

دوره 232  شماره 

صفحات  -

تاریخ انتشار 2003